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The methods presented in the first two articles of this series are simplified and 
generalized by growing stationary stochastic crystals from a given Ansatz layer. 
On the disorder trajectory the free energy, correlation functions, and multicriti- 
cal points are calculated explicitly for a large class of models with competing 
interactions, including the staggered eight-vertex model, the general sixteen- 
vertex model, the q-state Potts model on a triangular lattice, a general Z(q) 
model, and restricted spin glass models in two dimensions. 
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1. I N T R O D U C T I O N  

This is the last article in a series of papers devoted to the systematic study 
of order and disorder lines in systems with compet ing interactions. The 
order (disorder) lines are given trajectories of the parameter  space lying on 
ordered (disordered) phases of the model. In  these subspaces the competi-  
tion between different ordering tendencies has a spectacular result in 
simplifying the correlation functions and  sometimes making the model  
exactly soluble through an effective dimensionali ty reduction. 

In  the first article (1) (referred to henceforth as I) the Hamil tonian  of 
s p i n - l / 2  quan tum chains had  been interpreted as the time evolution 
(Liouville) operator  of a kinetic Ising model  (z) for a special choice of 
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coupling constants. In the second article (3) (referred to hereafter as II) the 
transfer matrix formalism had been used to calculate disorder trajectories 
and their duality generated analytic continuation (order lines) in a model 
with all possible interactions around a face of the square lattice (IRF 
model). 

The disorder phenomena are not simply a mathematical curiosity but 
have a rich physical content (see I). They provide exact information on a 
remarkably large subspace of very eomplicated models, and they form a 
solid basis for further investigations. As an example, we note here the 
recent calculation of the generating function of directed animals in two and 
three dimensions. (4~ 

In this article a simple crystal growth model method, as first intro- 
duced by Enting (5~ and Verhagen (6~ in the context of Ising models, is 
related to the previously used methods. Although technically equivalent to 
the methods used in I and II, this new formulation proves to be more 
flexible in dealing with general (asymmetric) cases. Also, it is a more direct 
approach since one constructs the model from the Ansatz instead of 
searching for the Ansatz appropriate to a given model (as in II). This makes 
the calculations easier and more transparent. It turns out that the crystal 
growth models (7) correspond to a commonly used Monte Carlo algorithm. 
When searching for disorder lines one uses equilibrium crystals, exactly as 
in the Peschel and Emery method. (2'3) 

It seems very interesting to consider also the problem of nonequilib- 
rium crystals, but this problem is not treated here. 

The paper is organized as follows. In Section 2 the crystal growth 
method is exposed and discussed in detail. The eight-vertex model is 
reconsidered in Section 3; it turns out that the model can be exactly solved 
in a four-dimensional subspace of its five-dimensional parameter space. 
The correlation functions are calculated and it is shown that within the 
four-dimensional disorder space there is a three-dimensional subspace 
where the correlation functions exhibit a purely one-dimensional, single 
exponential decay (see II). This means that it is possible to monitor a 
change from a monotonic to a modulated exponential decay within the 
disorder subspace itself. The general disorder subspace of the staggered 
eight-vertex model is treated in Section 4. Special cases leading to the 
Union Jack lattice, to the Ashkin-Teller, and to the ANNNI model are 
treated in detail. Section 5 contains the most complicated Ising-type model 
considered here, the staggered IRF model, which includes the sixteen- 
vertex model as a special case. The calculation of the free energy and 
correlation functions may be obtained numerically--formulas are provided 
to this end. The q-state Potts model with one- and two-body external fields 
on a triangular lattice is considered in Section 6. The model can be exactly 



Order and Disorder Lines 617 

solved on a five-dimensional subspace of its seven-dimensional parameter 
space for arbitrary q values. Again, the free energy and the correlation 
functions are explicitly calculated. 

Other q-state models, in particular general Z(q) models on a triangular 
lattice, are considered in Section 7. If there are no external fields, remark- 
ably simple formulas are obtained for the disorder constraint, the free 
energy, and the correlation functions. Finally, in Section 8 it is shown that 
the method applies as well when the competing interactions are also 
random variables. If a local disorder constraint is satisfied, the random 
anisotropic triangular Ising model is exactly soluble for arbitrary quenched 
distributions of bonds. Except for the randomly layered (8) free fermion 
models, this seems to be the only exact solution for a spin glass model in 
two dimensions. 

Whenever possible the analytic continuation of the results is obtained 
through the duality transformation (3~ and through the matrix inversion 
relation. (9~ Because of the large number of models considered it seems 
appropriate to comment on the notation: Ansatz parameters are usually 
denoted by small Greek letters. Couplings appearing in the normalization 
factors are denoted by capital letters A, B, etc., while small letters a, 
b . . . .  etc. denote intermediate expressions. The couplings of the resulting 
"crystal" model are denoted by the capital letters K, L . . . .  (also H for 
external fields). 

2. G R O W I N G  STOCHASTIC  CRYSTALS 

The crystal growth models are simple stochastic models where the 
crystal is supposed to grow layer after layer in a direction perpendicular to 
a given Miller plane. (5'7) The new layer of atoms is built up atom by atom 
following a given prescription (ordering). Each atom is "adsorbed" or 
rejected with a given probability conditional on the actual configuration of 
its predecessors [neighboring atoms on the previous layer(s)]. We shall not 
pursue further the details of crystal growth models. Instead, we would like 
to make k the connection between this model of crystal growth and kinetic 
Ising models. In view of the methods presented in I and II the procedure to 
be followed here is quite transparent: one constructs a time evolution 
process leaving invariant the Boltzmann distribution of  the (d-dimensional) 
Ansatz problem, thus defining a (d + 1)-dimensional lattice model at a 
disorder line. This interpretation makes the method used by Verhagen (6) 
very simple, allowing for a straightforward generalization to q-state models 
and random spin models. 

We now proceed to construct the first layer of the crystal--the Ansatz 
problem. As in II one may consider as an example a one-dimensional Ising 
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Fig. 1. The one-dimensional Ansatz problem. The even-numbered spins are denoted by dots, 
the odd-numbered spins by crosses. Wavy lines show c~2, straight lines denote a l couplings. 

model with alternating nearest-neighbor (NN) interactions in an external 
magnetic field (see Fig. la): 

- E A / k B T =  2(O~IS2jS2j+I "}- OL2S2j_IS2j "~ flSj) (2.1) 
J 

Usually it is useful to start with an exactly soluble Ansatz problem, 
especially if one wants an exact solution along the disorder trajectory. In 
models with short-range interactions a transfer matrix approach can be 
used for the calculation of the partition function and the correlation 
functions. For example, the partition function of the Ansatz (2.1) can be 
written as 

Z2u(o~l, o~2, /~ ) -'~ Tr T N (2.2) 



Order and Disorder Lines 619 

where 

T =  T 1 T  2 

( s  I T Is '  ) = exp(%ss' + Bs') (2.3) 

(s] T' I s '  ) = exp(a2ss' + f ls ' )  

In spin representation the elements of T are positive (at most non-negative), 
therefore the eigenvector z corresponding to the largest eigenvalue )t o of T 
is positive (11) (nodeless). Define the matrix 

p = 1 Z - ' T Z  (2.4) 
)t o 

where 

Zik = Zi~ik 

It is trivial to show that the matrix P is stochastic, that is 

(2.5) 

and from (2.2) 

P,.k= 1 (2.6) 
k 

[sing "~Nqp --  )~ N 7 Markov = / ~ , o ~ r  DN _ '~0 ~2N 7 
L,2N (2.7) 

Here l imu_+~P N represents the limit distribution of a Markov process 
defined by P. Note that the spin-spin correlation functions calculated from 
the Ising and from the Markov representation are exactly the same. This 
establishes the one-to-one correspondence between the Ansatz (2.1) [see 
also II Eq. (3.6)] and the Verhagen Ansatz. (6) 

Next, one proceeds by constructing a dynamic process leaving invari- 
ant the probability distribution ( 1 / Z ) e x p [ - ( 1 / k B T ) E A ( s ) ]  of a row 
(layer) of spins. Deform the Ansatz row (see Fig. la) into the sawtooth 
arrangement shown in Fig. lb. The Ansatz extends now into two rows in 
the y (time) direction. The stationary distribution of the first (t = 0) row 
can be obtained by summing up every second spin of (2.1)--they are 
denoted by crosses in Fig. lb. 

Now consider the following game: from left to right place on the 
second row a spin in the state + 1 ( - 1 )  according to the conditional 
probability (see Fig. l c) 

exp[s0(cqs 1 + 0/25' 2 4" ~ ) ]  

p ( S o I S 1  ,$2) = 2 cosh(O~lS 1 + 0~2s 2 --{-/~) 

= exp[so(a,s , + a2s 2 + f i )  - A - B , , ,  - B2s 2 - CSIS2] (2.8) 
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where 

A = ~1n24clc2c3c4,  

kln(q J  c,), 
c] = c~ + ~2 + B), 

B 1 = �88  

C = ~ 1 n ( c | c 4 / c 2 c 3 )  

c2 = c ~  a2 + B) 

C4= c~ + ~2 - B). 

Obviously, if the probability distribution of the predecessor spins (t = 0 
row) is sampled from the equilibrium distribution, so will be the probability 
of spins on the second row (t = 1). When all spins on the second row are 
set, follow the game with the third, fourth, etc. row. That way one 
constructs a stochastic crystal where the distribution of spins on sawtooth 
rows is obtained by solving the Ansatz problem (2.1). Note that the lattice 
is constructed diagonal-to-diagonal and, as explained in II, leads to the 
determination of disorder lines. 

In the Monte Carlo algorithm (t~ following the kinetic Ising model 
rules (b only one spin is set in each row, the others remaining fixed (see I). 
In the game described above, however, every spin of a new row is tested, 
and this represents an elementary action of the time-evolution operator. 
The sawtooth arrangement makes the detailed balance requirement (see I) 
unnecessary by ensuring the stationarity of the equilibrium distribution 
given by the Ansatz. Although possibly very interesting, the study of the 
dynamic properties of these crystal growth models is beyond the scope of 
this paper. The main observation to be made is that the stationary crystals 
grown from the equilibrium distribution of Ansatz spins can be reinter- 
preted as a (d + 1)-dimensional lattice model. (5'6) The form of the energy 

~2~t 

ss " ~ s3 ( i , j )  K3 

,//////////////, 
St $2 

0+1,;3 

Fig. 2. Construction of the Monte Carlo lattice and the three directions of the triangular 
lattice. 
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functional of the latter model is constructed by taking into account all 
processes during which a given spin s o behaves as a new generation spin or 
as a parent spin. For the Ansatz (2.1) this is shown in Fig. 2. The form of 
the  energy is obtained by grouping together all couplings connected to the 
central spin s o . In the example considered here one has to deal with the 
part . . . p(s0[ S1, S2)p(S  5 ] $6, S0)P(S 4 ] So, S3) . . . .  Using Eq. (2.8) one recog- 
nizes a triangular Ising lattice with couplings K1, K2, and K 3 given by (see 
Fig. 2 for notations) 

g I = O: 1 

K 2 = % (2.9) 

in an external field 

K3 ~ - C  

H = t 9 -  B 1 - B 2 (2.10) 

where A,  C, B 1, and B 2 are given functions of cq, c~ 2, and t9. From (2.10) 
the parameter/3 can be eliminated as 

cosh2/3 = 1 {b(a  - 1 )+  [b2(a - 1)2 + 4a2] 1/2} 

(2.11) 
a = 2cosh2H,  b = cosh2(K 1 +/s 

and the disorder constraint is 

cosh2(K 1 + K2) + cosh2fi 
e x p ( - 4 K 3 )  = cosh2(K, - / s  + cosh2/3 (2.12) 

As shown in I and II the correlation functions of spins lying on the 
same time row or on the sawtooth are calculated as usual from the transfer 
matrix formalism. One might guess that the free energy per spin can also be 
calculated f rom Eqs. (2.1)-(2.2). However, in order to calculate the free 
energy per spin, f, of the grown crystal, one has to slightly modify the 
Ansatz problem in such a way as to take into account that the couplings 
generated by  the normalization factor [Eq. (2.8)] acquire a minus sign. In 
our example the modified problem is defined as 

- E / kB T : 2 [ ~ l -.l- og2s2j_ lS2j -.t- /3s2j+ 1 
J 

- 2Cs2js2j+2 + (/3 - 2 B ,  - 2B2)s2j ] (2.13) 

(see also Fig. 3). The free energy per spin is most conveniently calculated 
by summing first the odd-numbered spins (denoted by crosses in Fig. 3) 
and then by the transfer matrix method. One may easily see that in the 
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Fig. 3. The modified Ansatz problem for the calculation of the free energy per spin. The 
dashed line represents a - 2 C  coupling, while the field acting on even (odd) numbered spins is 
fl - 2(B l + B2) and/~, respectively. 

nota t ion  of Fig. 2 one has: 

Of//Ogl = <SidSi+ l , j +  1> = <s2js2j+ 1> 

Of/OK2 = < si,jsi + 1,j> = < s2j-1s2j> 
(2.14) 

~f /O K3 --- (si,jsi~]+ 1> = <s2js2j+ 2> 

3f/OH -- (si,j> = (s2j > 

and f rom Eq. (2.13) 

1 l ln [ eK, c o s h H  + (e2K3sinh2H + e -2 ,v9 ' /2 ]  f =--llnZ~ = ~A + -i (2.15) 

where A is given in Eq. (2.8). The  sp in - sp in  correlat ions on the t = const  
rows are calculated as usual and  for a~ = a2 one obtains  

(si,jsi,j+r> = a ( ) t _ / X +  )r (2.16) 

with a a constant  and  

X_. = eCcosh(f l  + B) + [ e2Csinh2( fi + B) + e-2C] '/2 
(2.17) 

B =  B t = B 2 

The  one-dimensional  Ansatz  (2.1) has a T = 0 (Is,I,  la21, B ~  m)  Ising- 
type phase  transit ion if fl < la~l + [%[; a l , a 2  < 0. Calculat ing the corre- 
sponding K l, K2, /(3, and H couplings it turns out  that  the disorder 
subspace (2.12) ends on the line 

He, = 2lK, I + 21K21- 41K31 ( T ~ 0 )  (2.18) 
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which is the critical field value separating the double and the triple 
degenerate ground states of the anisotropic antiferromagnetic triangular 
Ising model. (12) 

The example shown here was first treated by Verhagen. (6) Finally, we 
comment on the possibility of analytically continuing these results to 
complex couplings (negative Boltzmann weights). If H -- 0, a duality trans- 
formation holds between the triangular and the honeycomb Ising model. (~3) 
However, since on the disorder subspace (14~ sgn(KlK2K3) -- - 1, the duality 
transformation will map the disorder line into an order line of the analytic 
continuation of the honeycomb lattice (complex couplings), as discussed in 
II. Another possibility arises from the matrix inversion method. (9) After 
constructing the diagonal-to-diagonal matrix as in II Section 3, one calcu- 
lates the inverse of that matrix. Following Baxter (~5) one obtains for the 
free energy per spin 

Z(K~ , K 2 , K 3 , H  ) + f ( - K  3 ,K  2 + #r/2,  - K ~ ,  - H )  = ln2i s inh2K 2 

(2.19) 

Note that for H = 0 this relation and a simple relation expressing the 
invariance of f to lattice rotations are sufficient to solve the model ex- 
actly.(9,15) 

3. THE EIGHT-VERTEX MODEL REVISITED 

The disorder line of the eight-vertex model has been previously dis- 
cussed in I! and independently in Refs. 5 and 16. Enting had also briefly 
discussed the IRF model. (5) In order to show the flexibility of the crystal 
growth method we first reconsider here the eight-vertex (the even) model in 
its most general form. These calculations will be also used when discussing 
the staggered eight-vertex model (Section 4). 

The Ansatz problem is shown in Figs. 4a and 4b. The Ansatz parame- 
ters 0~l, a2, a3, and a 4 correspond to the couplings SoS l, SOS2, SOS3, and 
SoSiS2S 3, respectively. Since the general even (eight-vertex) model has in 
total five independent couplings, this Ansatz should lead to a four- 
dimensional disorder subspace. It is also clear that the form of the Ansatz is 
a straightforward generalization of (2.1). However, here one has to sum up 
two consecutive rows of spins in order to obtain the basic stationary 
distribution (see Fig. 4a). Using the notations of Fig. 4b the conditional 
probability is given as 

])(So IS1 ,$2 ,$3) ~--- exp{ so(als I + aft2 + a3s 3 + a4sis2s3) 

- A  - Bls ls  2 - B2s2s 3 - B3s1s3} (3.1) 
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The Ansatz problem for the eight-vertex problem. The couplings al ,  a2, a3, and a 4 
are denoted by straight, dashed, wavy, and circle lines, respectively. 
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Fig. 5. Construction of the stochastic lattice for the eight-vertex problem. 
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where 

A = �88 I n  24CLC2C3C4, 
B 2 = � 8 8  

C 1 = cosh(a I + O~ 2 "1- OL 3 "1- Od4) , 

C 3 = c o s h ( o q  - ~ 2  - ~ --I- 0(4) , 

B 1 = J ln(c 1 c2/c3c4) 

B 3 = l l n (C lC4 /CzC3)  

C 2 ~-" cosh(al + a2 - a3 - a4) 

r  ~-- c o s h ( 0 d l  - -  a 2  "/t"0~3 - -  a n )  

(3.2) 

The crystal is constructed as explained in the previous section and is shown 
in Fig. 5. By collecting all couplings related to the spin s o one obtains an 
eight-vertex model in the following spin representation (see Fig. 5): 

K 4  o~ 4 

D 1 ~-- o~ 2 

D_ = - B3 (3.3) 

K x = oq - B 2 

K y  = o~ 3 - 91  

The disorder condition can be expressed as 

cosh2(al + a3) + cosh2(K 4 + D1) 
e x p ( - 4 D  ) = cosh2(al _ a3 ) + cosh2(K4 - D1 ) (3.4) 

where 

_+ a3)=  �89 (a_+ - 1 )  + [b2+_(a+_ - 1 )  2 + 4a~]1/2} cosh 2(eq 

a + = 2 cosh 2(/r • 1 6 2  ) 

b+ -- cosh2(K 4 _ DI) 

(3.5) 

Equation (3.4) is a single condition between the five independent couplings 
of the eight-vertex model. This result extends the similar calculations of 
Refs. 5, 3, and 16, which were obtained for more symmetric cases. The 
calculation of the free energy and of the correlation functions is lengthy 
and is left to Appendix A. The correlation functions between two spins on 
the same time-row has the form 

f ~ r 
(SoSr) = A (~3/~1) + B ( ~ 4 / ~ )  (3.6) 

if ~3 and ~4 are real [see Eqs. (A. 10)-(A.11)] or 
({  X~ r 

(s0sr  = cos(qr + (3.7) 

if ~3 and ~4 form a complex conjugated pair. It turns out that by changing 
the ~Ansatz parameters a l , . . . ,  a 4 one can observe within the disorder 
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surface (3.4) a "one-dimensional" disorder subspace defined by Eq. (A. 13), 
where the correlation length has a strong cusplike minimum. Therefore it is 
possible to monitor the change from monotonic to a modulated decay 
within the exactly soluble disorder subspace (3.4). This result strongly 
supports the conjectures made in I regarding the nature and the physical 
properties of systems with competing interactions near a disorder line. Note 
that the case K x = Ky discussed in II shows a single exponential decay of 
the correlations. 

Finally, we briefly discuss the possible analytic continuations of these 
results. As shown in II Table II the general eight-vertex model (3.3) can be 
expressed in the "diagonal-to-diagonal" transfer matrix representation in 
terms of the coefficients PJJ~ [II(3.5)]. The duality transformation [I1(3.12)] 
and the use of II Table I lead to the dual model, with some of the weights 
assigning negative values. 

Alternately, in the matrix inversion method a straightforward calcula- 
tion leads to 

f ( K  x , Ky, D], D_,  g4) "1"- f(I~x, Is 1),, 1)_,/s = 5 (3.8) 

where 

n + m  
/ )1=  DL+ i2  - 2 ' n ' m =  +-1'+-2 . . . .  

(3.9) 
/)_ = �89 t - K4)/s inh2(D , + K4)] 

l~4= K4 q- i qr n -  m 
2 2 

ff = D + �89 1 + Ka)sinh(K 4 - D_ )] 

It would be interesting to clarify what is the relation between the two 
analytic continuations, one generated by the duality transformation 11(3.12) 
and the other one by the matrix inversion (3.9). 

4. THE STAGGERED EIGHT-VERTEX MODEL 

The next step towards more and more complex models is the staggered 
eight-vertex model. In the Hamiltonian limit this model had already been 
discussed in I. Here, again, the crystal growth method allows for a straight- 
forward generalization of results. The Ansatz problem is shown in Fig. 6, 
while the construction of the crystal is sketched in Fig. 7. The results 
obtained for the homogeneous eight-vertex model are easily generalized by 
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F tion of the A odel. 

Fig. 7. The two basic processes for the construction of the staggered lattice. 

i n t r o d u c i n g  a sub l a t t i c e  i n d e x  i = A ,  B:  

K4 (') = a4(i) 

D~/) = o~(2 0 

Ko6 = K(i'J) = ~ i) - -  B(J)'2 K02 = K (j ' i )  (4.1) 

K08 = K/i,J) = a~ i) - B ( J ) ,  K04 = K/J ,  i) 

D (i) = - B(3 i) 

where  i = A ,  B, i 4= j ,  a n d  3202 . . .  c o r r e s p o n d s  to the  c o u p l i n g  b e t w e e n  s o 
a n d  s 2 . . . .  as s h o w n  in Figs .  5 a n d  7. T h e  d i s o r d e r  c o n d i t i o n s  are  m o r e  
c o m p l i c a t e d :  

Gosh 2(O/~ i) _{_ Og3(i)) ,,.[_ Gosh 2(K4  (i) + D (/>) 

e x p ( - 4 D ( _  0) = co sh 2 (a } / )  _ a(i)  ) + cosh2(K4(/)  _ D}i)  ) , i =  A , B  

(4.2) 



where now 

and 

\ 

cosh 2( a{ 0 +_ a~ i)) = �89 c( i+_ ' + ( c(i+_ '2 + 4d~/) 1/2 ] 

c (i) = (abat~ + ?t - bb - a ) / ( a b  + b) 

d (i) = ('Elb dr a ~ b ) / ( a b  + b) 

(4.3) 

(4.4) 

a • ~" 2 Gosh 2 ( K  (iJ) .q._ K)i , j))  

?t+_ = 2cosh2(K~ j'i' + K) j'i)) 
(4.5) 

b • = cosh 2(K4 ~ i~ + z~ ~0) 
5+ = cosh2(K4~J~ _+ D~J~) 

In Eqs. (4.4) the + subscript had been omitted on both sides of the 
equations. Obviously, the general staggered eight-vertex model has ten 
independent couplings and is exactly soluble on an eight-dimensional 
subspace defined by Eqs. (4.2)-(4.5). We consider now a few special cases. 

4.1. The Union-Jack Lattice 

As shown in Fig. 8 the Union-Jack lattice is obtained if for the (3 spin 
one has 

a~4;) = 0 

o~2 ~A) = 0 (4.6) 

B3 ~B) = 0 

628 Rujfin 

Fig. 8. The Union-Jack lattice. The spins denoted by (3 and [] correspond to the two 
possible processes shown in Fig. 7. 
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These restrictions lead to a very general Un ion- Jack  lattice with a max imal  
n u m b e r  of six independent  couplings. Originally, the model  was solved (~7~ 
for the case when the diagonal  interactions through the central  spin are a l l  

equal  and  the original Ising couplings (wavy lines in Fig. 8) are also 
isotropic. The  Un ion- Jack  lattice is a free fermion model  and  the correla- 
tion funct ions can be calculated exactly. The  disorder point  had  been 
found by Stephenson.  (14~ Here  Eqs. (4.2)-(4.7) generalize his result to the 
most  general  Un ion - Jack  lattice. 

4.2. The  A N N N I  Mode l  

The axia l -next-neares t -neighbor  Ising ( A N N N I )  model  (t8~ can be re- 
fo rmula ted  as a s taggered eight-vertex model  (~9) and  is shown in Fig. 9. 
Again,  it is easy to see that  one has to satisfy the following conditions: 

a4 (i) = 0 (4.7) 

while for the Q spin 

and  

a(3 B) - B (  A) = O 
(4.8) 

o~ B) - B2('4) = 0 

e~ A~ - B~ B) = e~ ~ - B~  B) v ~ 0 

Also one has the condi t ion 

C~(2A) = C~2(B) (4.9) 

I I I ; 1 ~ I 

I 
I I [ 

i , , i - r -  ; I 
I I I ~ f I 
I I I , [  t 

/ ! \  I / ! \  ~ / ' , \  I 
, / ~ \ I / ', \ , / ', \ , 

I I I ~ I I t 

Fig. 9. The ANNNI model as a staggered eight-vertex model. The Ising couplings in the x, y 
directions are denoted by solid and dashed lines, while the axial NNN interaction is denoted 
by wavy lines. 
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The A N N N I  model has three independent couplings and since the three 
equations (4.8) are not independent, one obtains a two-dimensional disor- 
der subspace. Its calculation is done, however, more easily from the transfer 
matrix formulation. (3) 

4.3. The Ashkin-Teller Model 

It is well known that the Ashkin-Teller (AT) model (2~ can be ex- 
pressed as the staggered eight-vertex model shown in Fig. 10. The eight- 
vertex couplings are given by 

sinh 2( + 

v i, = eli, + �88 I n  
sinh 2(/s (i) _/~4(i)) 

D f  ) = - �88 ~ +/~4~i')tanh(/~2 (~ -/~4(~ (4.10) 

K4(0 = �88 (i' - K(4 i ' ) / t anh ( I~  i' + K~40)] 

where K(2i),~2(4 0 are the original AT couplings in spin representation and 
i = x , y :  

H A T  -- I~(2 ~'y~ ~ (SiS j + ri'rj) + ~21 x'y) ~_~ sisfrir j (4.11) 
k~ T (O'Sx,y <q>x.~ 

s i and r i are Ising variables + 1 and (i, J)x,y denotes nearest neighbors in 

4 

Fig. 10. The Ashkin-Teller model as a staggered eight-vertex model. For details, see text. 
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the x (y) direction. If the additional constraints 

~0 _ ~ j ~  = 0 
(4.12) 

~0 _ B~J~ = 0 

are met one gains the disorder solution. A simpler derivation of this result is 
given in Section 7, where it is also shown that (4.2) do not lead to a disorder 
line for positive Boltzmann weights on a square lattice. 

5. THE IRF AND THE SIXTEEN-VERTEX MODEL 

The interactions-around-a-face (IRF) model has been briefly consid- 
ered before35'3'16) The sixteen-vertex model can be represented as a stag- 
gered IRF model323) In general, the IRF model contains five independent 
couplings for odd and five other couplings corresponding to even spin 
products. As already shown by Enting, O~ the disorder subspace forms an 
eight-dimensional subspace. Unfortunately, the form of the two constraints 
in terms of IRF couplings is quite frightful and will not be given here. The 
calculation of the free energy and of correlation functions follows the line 
of thought of Appendix A but involves the diagonalization of an irreducible 
4 • 4 matrix. Therefore, I shall restrict myself here to a minimal descrip- 
tion, though sufficient for numerical purposes. 

One starts again with an Ansatz as displayed in Fig. 7. However, the 
conditional probability p ( s o l s  1,s2,s3) has its most general form 

p(i)(s  0 l $1 ,S 2 , $ 3 )  = exp{s0[ 1~ i) -1" 1~(2i)sIS2 "at- 1~(3i)$2S3 -1- t~(i)s1s3 

Jr- o~i)s1 + 0l(2i)$2 ...1- og~i)s3 + oI(i)sIS2S3] 

-AV~ - D ( % -  D ~ % -  D ~% - B~O,l~ ~ 

- B ( 2 0 s 2 s 3 -  B(3i)s,s3- E(Os,s2s3} (5.1) 

where 

A = �89 28CLC2r162162 

D 1 = �89 

D 2  = k l n ( r 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2 1 6 2  

D 3 = �89 

B 1 = �89 

B 2 = Iln(ClC2C7C8/C3C4C5C6) 

B3 = 1 ln(c1r162162 ) 

g = 11n(clc5c6c7/c2c3c4c8) 

( 5 . 2 )  
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and 

c I = 2cosh(/31 + 132 +/33 +/34 + 0/1 + 0[2 + 0/3 + 0/4) 

e 2 = 2cosh( B1 - -  /32 "1- B 3  - -  B 4  - -  0/1 + 0~2 "t" 0[3 - -  0[4) 

c a -~ 2cosh(/31 - / 3 2  - /33 at- /34 + 0/1 - 0[2 + 0/3 - 0/4) 

c 4 = 2cosh(f l ,  + B2  - /33 - -  /34 .+` 0/1 "{'- 0[2 - -  0~3 - -  0[4) 

c 5 = 2cosh( flj + f 1 2 -  ,83 - / 3 4  - 0/, - 0/2 + 0/3+ an) 

c 6 = 2cosh( fll - fiE - f13 + f14 - 0/1 + 0/2 - % + 0/4) 

c 7 = 2cosh( flj - / 3 2  + f13 - / 3 4  + a~ - % - % + a4) 

C 8 ~--- 2 c o s h ( / 3 1  + /~2 "[- B 3  + B 4  - -  0/t  - -  012 - -  Og3 - -  0[4) 

(5.3) 

In  (5.2)-(5.3) the upper  sublatt ice index (i) has been omit ted in order  to not  
add  further  complicat ions  to these formulas.  

F r o m  Figs. 5 and  7 and  the fo rm ((5.1) one obtains  the couplings of 
the staggered I R F  model  at  the disorder line (in parentheses  are the spin 
products  denoted  according to Fig. 5): 

(So) H<i) = fl~i) _ D[ j )  _ D(i)  _ D ( j )  (5.4a) 

(SoSI  ,SOS5) D(i)  = a~ i) (5.4b) 

(sos3,sosT) O(/) = - B}J) (5,4c) 

(SOS2) g (j ' i) ,= 0/{J) -- B(2 i) 
(5.4d)  

(SOS6) e(if f)  = 0/~i) -- B ( j )  

(SoSs) ~(J , ' )  = 4J~ - g p  
(5.4e) 

(SOS4) K )  i'J? = a(3 0 -- B~J) 

(~os,~':, ~oS4Ss) K ~ ,  = N o (5.4b 

(SOS6S8) K(J__ )1 ~. fl(3 j) 

( SoS1S8 ,SOS5S6 ) K(3i)_2 = [~ (2 i) 
(5.4g) 

(SOS2S4) x 3 ( J )  2 ~--- ~2(J  ) 

(SOS3S4, SOS6S7 ) K ( J )  3 = - -  E(J)  (5.4h) 
(sos2s8) K}23 = - E ( ~  

- K ( J )  = fl(4J) (SOS2S3' SOS7S8) 3--4 (5.4i) 

(SOS4S6) K(3~4 = ~(4 i) 

K4v> = g o  (5.4j) 



Order and Disorder Lines 633 

Using Eqs. (5.2)-(5.4) one has first to express the Ansatz parameters in 
terms of the staggered IRF parameters. This means to solve Eqs. (5.4a), 
(5.4d), and (5.4e) for fi( ~ a} i), and a3 (~ The disorder constraints are given 
by Eqs. (5.4c), (5.4h). Finally one obta ins  an exact solution in a 16- 
dimensional subspace of a 20-dimensional parameter space of the staggered 
IRF model. 

The sixteen-vertex model is defined in such a way (23~ that, say, 
a/~A) = fli (A) = 0; i = 1 . . . .  4. For  the homogeneous IRF model ~}A) 
= o I ( B ) ;  t~i (A)  = t~i (B), i = 1 , . . . ,  4. In both cases one can solve the model 
in an eight-dimensional subspace of its ten-dimensional parameter space. 
The free energy and the correlation functions can be calculated following 
the procedure shown in Appendix A. However, the even and the odd sector 
are not perpendicular any longer. This implies correlation functions of the 
form 

~2 ~3 ~4 )r 

where at least h I and )t 2 are real eigenvalues. Again, it is possible to monitor 
a change from the (5.5) form to 

r ( ) r  
(SOSr) = (S)':' + a -~l -~ (5.6) 

where X3,4 = •e -+ iq,, 7~ > X2. 
These general remarks end the part dealing with white and black 

crystals (Ising variables). We shall try to make the next section more 
colorful. 

6.  GROWING COLORED CRYSTALS: POTTS MODELS ON A 
TRIANGULAR LATTICE 

The crystal growth models treated so far were all related to Ising 
variables: a spin value - 1 means that an atom is absent, + 1 means that it 
is present in a given lattice point. The procedure can be generalized to take 
into account atoms of different species (colors) described by a Potts-like 
variable l i = 0, 1,2, .  . . . .  q - 1. 

Let us start with an Ansatz of the type discussed in Section 2 (see Fig. 
1). The energy function of the Ansatz problem is now given by 

E A 
k B T -- 2 [O~[~12j,12j+l -1- 0~2(~12j--1,'2) -[- ~O(~12j,O + ~12j+.,0) 

J 

+ ~l~12),[2d.+ll~12j,O -]" t~R~12j_l,12j(~12j, 0 "1- "~[~,2d_l,]2j~12j_2,12j_l] (6.1) 
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where 

1 if x = y  
6x'Y= 0 if xv  a y  

/) = 0, 1 , . . . ,  q -  1. This model corresponds to a one-dimensional stag- 
gered Potts model (23) (011,012) with a field and a two-spin field in the 0 
direction (/30,/31, fi2) as well as with a three-spin interaction (y) among 
odd sites and their nearest neighbors. The normalization factor of the 
conditional probability can be expressed as (see Fig. lc) 

~ , , e x p [ -  1 E(lo,ll,12)] 
to k-~ 

= exp[A + B6h,,2 + C16,,,o + C26,~,o + D6t,,,fih,o ] (6.2) 

where 

A = l n ( e " ' + e " : + e  ~ ~  

B = ln[(e ~+~2+v + e ~~ + q -  2 ) / (e  ~ + e"2+ e~~ q -  3)] 

Cl-- ln[(e~+~~176 (6.3) 

C 2 = ln[(e "2+B~ + e "' + q -  2 ) / (e  "' + e ~2 + e B~ + q - 3)] 

D = ln[(e "'+"2+~~ + q - 1 ) / ( e " '  + e"2+ e3~ q -  3)] 

" B -  C 1 - C 2 

Using the notation of Fig. 2 the resulting lattice is a Potts model on a 
triangular lattice with the following couplings: 

El = 011 

K 2  ~ 0[ 2 

K3= - B 

H = f i o -  C1- (22 
(6.4) 

M l = /31 

M2 = /32 

M3= - D  

L = y  

Note that the K i, M i couplings follow the basic directions of the lattice as 
shown in Fig. 2 but the three-body interaction L is present only for the 
up-pointing triangles, x = exp(/30) can be calculated as the positive real 
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root of the equation 

x 3 + x2(2a - f b d )  + x ( a  2 - f l o e  - f c d )  - f c e =  0 

where 

(6.5) 

a = e K' + e K~ + q -  3 

b = e K` + M 1 

e = e K ~ + q - - 2  
(6.6) 

d ~ e K2+M2 

e = e K ~ + q - - 2 ,  

f ~ e H 

The disorder constraints are defined by 

K 3 = - B ( K , , K 2 , M  I , M 2 , H , L  ) 
(6.7) 

M 3 = - D ( K 1 ,  K2, MI,  M2, H, L) 

The free energy and the correlation functions are calculated in Appendix B. 
If one considers only the Potts interactions (t3 0 =/31 =/3  2 = 7  = 0), Eq. 
(6.7) has a remarkably simple form: 

e x p ( -  K3) = ( e  KI+K2 -t- q - 1 ) / ( e  K~ + e K2 + q - 2) (6.8) 

This is the generalization of Stephenson's result (~4) for the triangular Ising 
model. Not surprisingly, it follows from (6.8) that in order to get a disorder 
line one must have competing interactions 

sgn(K1K2K3) = - 1 (6.9) 

It is interesting to remark that for the isotropic antiferromagnet (K~ = K 2 
= K3 = - I g l )  the disorder subspace breaks up in two (real) points 

e -IK4 = 1 ( T =  ~ )  (6.10) 

e - I K l = � 8 9  ' /2)  q < 2  (6.11) 

For q = 2 it is known that the critical point of the model is depressed to 
T = 0 by the "fully frustration" condition (6.9). At the same time the 
ground state is macroscopically degenerated and includes the ground-state 
possibility represented by the one-dimensional Ansatz (6.1). This explains 
the additional solution (6.11). If q > 2 the condition (6.9) does not ensure 
any more that the system is frustrated and the solution (6.11) becomes 
complex. For q < 2, however, the solution (6.11) corresponds to a nonzero 
disorder point. In the Ising model (q = 2) a systematic analysis of the 
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correlations in diagonally layered Ising models (25) shows that in the case of 
competing interactions 0 < T~ < T D, where T~ is the (Ising type) critical 
point and T o the disorder point. For fully frustrated cases, however, 
T~ = T D = 0. If one assumes this mechanism to be also valid for q < 2, our 
result (6.11) indicates that the critical point moves away from T = 0. An 
interesting proposition concerning the nature of this phase transition and 
the structure of the low-temperature phase had been put forward by Berker 
and Kadanoff. (26) 

If L 4 = 0 Eqs. (6.4) define a self-dual model [see Ref. 24 Eqs. (2.18)- 
(2.27) and the references mentioned therein]. The duality relation (24) is 

e ~ * -  1 _ q zz* = q2, i = 1,2,3 
eK,--1 Z '  

(6.12) 
Z ~ e K I + K z + K 3 + L  - -  e KI  - -  e K2 - -  e K3 "~- 2 

and maps the disorder surface 

e x p ( -  K3) = (e ~;'+K~+/~ + q - 1 ) / (e  ~;' + e K~ + q - 2) (6.13) 

into an order surface (see also II). 
When L = 0 but not the fields/~0,/~, and/~2, the resulting Potts model 

can be related to different random geometric problems as the percolation 
problem, the lattice animal problem, etc. (24) Possible applications of these 
results will be discussed in a separate publication. 

7. GENERAL Z(q) MODELS ON A TRIANGULAR LATTICE 

Consider the most general nearest-neighbor interaction which is invari- 
ant under the transformation l r ~  l, + 1 for all lattice points r, l r = O, 
1 . . . . .  q -  1. The interaction between two N N  spins situated on the 
direction i = 1,2, 3 of the triangular lattice can be expanded on Fourier 
series as 

H (q) q-  1 
k8 T - 2 ~i ~ [C(mi)C~ (7.1) 

( r , r  l )  " m = 0  

where (r, r l ) / a r e  NN lattice sites in direction i,/3 = 2 ~ / q ,  c2 ) and s~ i) are 
real couplings obeying 

= 

s~O m = -- S2 ) (7.2) 

The model (7.1) contains as special cases different chiral (asymmetric) 
Potts (27) and clock (28) models as well as the Z ( q )  model (s~) = 0), the Potts 
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model, (23) the vector (or planar) Potts model (24~ (S~m i) = 0 for all m, C~m 0 = 0 
if m > 2), the discrete Villain model, ~29) etc. In order to obtain general 
formulas for the disorder-disorder line of (7. t), one starts with an Ansatz as 
shown in Fig. 1 and with the interaction 

EA q-1 
kB T -- 2 2 [e~(1)cosm~(12j+l -- 12j) + t~(ml)sinml~(12j+l- 12j) 

j m=O 

+ C~(m 2~ COS mfl  (12j -- 12j_1) + /~(2) sin m ~  (12j -- 12j -1 ) ] 

(7.3) 

where a(~ 0, fl(0 satisfy the condition (7.2). The only nontrivial part of the 
calculation is to construct the normalization factor of the conditional 
probability P(/01 l],12) of Fig. 2. Since this is simply an iteration (13) (or 
decimation) transformation one may use the one-dimensional transfer 
matrix to obtain the resulting couplings between the spins l I and l 2. The 
one-dimensional transfer matrix between the spins 11 and l 0 has the continu- 
ant form 

where 

11-~0 = 

fo f t  " ' "  f q ,1  

L - I  fo f l  " " " fq-2 

fl f2 " ' "  fo 

(7.4) 

The corresponding matrix between the spins l 0 and /2 has the same 
structure but with elements given by 

 o--exp{ X E <2'co  + Bm' ' in me, J} (76  
Summing the spin l o corresponds to the matrix multiplication 

t>+2 = tl_~0t0~ a (7.7) 

where t]__,2 is also a continuant matrix whose elements are 

q--1 

ho = ~2 fvgv+o (7.8) 
7=0 

The couplings (a(m 3), tim ~3~) and the multiplicative constant A of the l l - I  2 
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interaction are 

A = 1 ~lnh ~ 
q o 

= 1 ~ cos mflp In h o (7.9) 

= 1 ~o sin mBo In hp 

Since by definition fo and go are positive [Eqs. (7.5)-(7.6)] so is h o. Hence 
a~3), fl~3) and A are real quantities. The couplings of the general Z(q) 
model (7.1) are then 

C(m/) = O/(mi) (7,10) 

s ~  = B~ i~, i = 1,2, 3 

and the disorder subspace is given through Eqs. (7.5)-(7.9). In general, the 
anisotropic model (7.1) has a parameter space whose dimension equals 
3 ( q -  1). The disorder surface (7.9) is 2 ( q -  1) dimensional. Note that 
except for the trivial one-dimensional case (a~ i) = fl~0 = 0 for i = 1,2, any 
m) the nonstaggered square lattice does not have a disorder solution. The 
free energy per spin of the model is obtained as 

f = �89 + �89 ~ fo(a~m3), fl~3') l (7.11) 

where A (a~m 0, a ~2), tim ~I~, fl~2))is given by Eq. (7.9). f has the form (7.5) but 
with a~ 3~, tim ~3) instead of a~ 0, fl~O, respectively. 

The two spin correlation functions on the same time row have the form 

(exp[2~rim(lr-lo)l> =am(Xm) r 
T ~0 (7.12) 

where 
q - I  

~km = 2 hoexp( 2~ri 0=0 \--q-mp) (7.13) 

and {a m) a r e  coupling-independent constants. 
The generalization of these results to include external fields is straight- 

forward. The calculations are more difficult and the results less transparent, 
though. 

8, CONSTRUCTING RANDOM, STOCHASTIC CRYSTALS: EXACT 
SOLUTION OF A CONSTRAINED SPIN GLASS MODEL 

In this section the method of constructing Monte Carlo (stochastic) 
crystals is generalized into a different direction. Let us consider again a 
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type of Ansatz as shown in Fig. 1. As discussed in Section 2, the Ansatz 
problem itself is defined as a one-dimensional Ising (or Potts . . . .  etc.) 
problem, or alternately, as a Markov process given through the matrix (2.4). 
The Ansatz problem can be generalized to include random bonds: 

E A 
k B V - 2 ( " / 2 /2 j+ ,  + B/2j-  l s 0  (8.1) 

J 
where aj. (flj) is a random variable sampled from the distribution P(a) 
[R(fl)]. The free energy corresponding to (8.1)--and not to the Monte 
Carlo c rys ta l - i s  calculated as 

In Z u 1 N/2 
-- / ~  In 4 cosh aj cosh f12 f =  N N . = j  

1 ,ln2+ 1 fd e(.)lncosh.+ 5fdBR(p)lncosh p (8.2) 
N-->~ "2 

The correlation function between two spins at a distance r = 2k apart can 
be calculated as 

k 
1 1 2 ( s j j + 2 k ) =  N 2 I-[ ( tanhai tanh fii+l) 

N . . . .  
J J ~=J 

N ~ : [ f  daP(a)idfiR(fi)(tanhatanh fi);k (8.3) 

Similarly, all correlations between even-numbered spins are exactly the 
same as the corresponding correlations between odd-numbered spins. 
Therefore, the probability distribution of the even-numbered and of the 
odd-numbered spins should also be identical. This proves that the construc- 
tion described in Section 2 leads to an equilibrium triangular crystal. In this 
particular case the disorder constraint is a local condition. Every horizontal 
bond K3(i ) in every up-pointing triangle (i) must satisfy the condition 

K3(i ) -- �89 ) + K2(i)J/cosh[K,(i ) - K2(i)] } (8.4) 

where (i) is now an index numbering the up-pointing triangles and Ki(i), 
K2(i ) are random variables distributed according to P(K 0 and R(K2), 
respectively. Note that Eq. (8.4) implies 

sgn[ K,(i)K2(i)K3(i)] = - 1 (8.5) 

expressing the competition between spins. In general Eq. (8.4) does not 
imply, however, a full frustration O~ of the elementary triangles. The free 
energy per spin of the equilibrium crystal is given by 

1 f f dK, dK:P(K,)R(K2)[A + lncoshK3] (8.6) f ( f l )  = ln2 + 
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where 

A(K, ,K2) = �89 + K2)cosh(K , - 1(2) ] (8.V) 

The results presented here can be extended to the case when the external 
field is not zero. In that case the Ansatz transfer matrices do not commute 
and even the solution of the Ansatz problem becomes quite sophisti- 
cated. (31) The situation is more simple if one deals with Ansatze whose 
transfer matrices commute, as for the general Z(q) models discussed in the 
previous section. 

We find the presence of disorder subspaces in random systems with 
competing interactions quite remarkable. One may guess that the disorder 
subspaces should play an even more important role in spin glasses than in 
nonrandom models. Further work is needed to fully exploit the physics 
contained in these solutions. 

9. CONCLUSIONS 

In this paper a large body of exact results had been obtained using a 
method akin to the methods previously used in parts I and II. Again, this 
method is inherently related to a dynamic process: here it corresponds to a 

\ 
\ 
\ 
\ 

PC\\ 
\ 

competition 
rat io 

Fig. 11. The structure of the phase diagram near a Lifshitz point (L). PC denotes a 
paramagnetic phase with a monotonic decay of correlations, PI a paramagnetic phase with a 
modulated decay, C an ordered (commensurate) phase, and I a helical (floating or incommen- 
surate) phase. Note the disorder line (dotted line) ending on the Lifshitz point. 
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stochastic model of crystal growth. Besides reconsidering the eight-vertex 
model, disorder subspaces had been calculated for the staggered eight- 
vertex model, the general (staggered) IRF model, for the triangular Ports 
model with fields, a general Z(q) model including chiral terms, and, finally, 
for spin glass models. This wide range of applicability is not restricted to 
two-dimensional models. An example of a three-dimensional model with 
d = 2 Ising-type phase transition had been already presented in I. 

As far as the physical implications of these results are concerned, it 
seems that further applications are possible--besides the calculation of 
multicritical points, the monitoring of changes in the pattern of correla- 
tions, etc. (see I). A recent example relates the disorder solution (2.12) (6) to 
the problem of directed animals. (4) Another example is the following. On 
physical grounds it is quite plausible that a Lifshitz point (a multicritical 
point on the common border of a disordered, an ordered-commensurate, 
and a helical-incommensurate-phase) should have the "fine" structure 
shown in Fig. 11, that is, there is a disorder line ending on L. The absence 
of such a disorder line in the chiral clock models (28) can be considered as 
an indication that--as recently shown(32)--the floating phase extends up to 
the decoupling point for q = 3, 4. 

Finally, the presence of disorder lines in fully frustrated and random 
spin systems indicates that--a t  least at low temperatures--the modulated 
paramagnetic phase may be  interpreted as a precursor of the fully devel- 
oped spin glass phase. Indeed, Monte Carlo simulations (33~ of nonrandom 
models with competing interactions suffer from the Same lack of ergodicity 
as the Spin glass models. (34) 

ACKNOWLEDGMENTS 

I am grateful to Professor I. Peschel for critical correspondence and for 
correcting some misprints in paper II. I am indebted to Professor R. J. 
Baxter for calling my attention to the work of Enting. (5) As may be already 
obvious to the reader, that line of thought made the calculations of this 
paper feasible. 

APPENDIX A: FREE ENERGY AND CORRELATION FUNCTIONS 
OF THE EIGHT-VERTEX MODEL ON THE 
DISORDER SUBSPACE 

Consider the Ansatz problem shown in Fig. 4a. By integrating spin-by- 
spin it is easy to see that the transfer matrix eigenvalue problem has the 



642 Rujan 

$~ 

o~1 o( 3 

s, :i s~ 

s• 

s~ 

S~ S~ s~ 

n, " \  

s 2 8 3 s ;  

Fig. 12. Graphical representation of the transfer matrix for the calculation of free energy and 
correlations in the eight-vertex model. 

following form (in the notation of Fig. 12): 

~. exp{ al(sls 3 + s2s'l) + c~2(s2s 3 + s~$4) ..t- 0~3($3s ] --I- S'lSi) 
SbS2 $3~$4 

+ ..(=:s3~=', + =is;~.s~)) ~'(=,, =~) = x ~ ( A ,  =;) (A.1) 

It is useful to sum up first the spins s 3 and s 4 using Eqs. (3.1)-(Y2). One 
obtains then the simpler equation 

exp{ Bls,s2 + a3sls' 2 + B3s,s i + B;s2s' a + (al + B2)sls2}'t'(s, ,s2) 
Sb$2 

= )t't'(s], s~) (A.2)  

where A, B 1, B 2, and B 3 a r e  given in Eq. (3.2), while A', B~, etc. are the 
same functions but for a~ = a3 -- 0. Also 

= e A + A ' ~  (A.3) 

The 4 X 4 matrix defined by (A.2) can be further reduced to two 2 x 2 
blocks corresponding to even and odd eigenvectors, respectively. The even 
(odd) subspace is 

I 2e2("~+B')c~ + B 2 + B~ + B;'~; B,-~cosh  ] 
sinh ~ ~ , 2e sinh (al + B2 + B3 - B~) 

/ 

2e"~-B'c~ B ~ -  a I - B2"~; 2e-2('~+BOc~ + B~ - a I - B2) ! 
sinh" ; sinh" 3 

(A.4) 
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The eigenvalues of the even subspace are given by 

a(+) + d(+)  + k F(a(+) -- d( +))2+ 4b  ( +)C(+)] 1/2j 2`1,2 = 

where 

(A.5) 

where 

A~ = ~ ~lleft(s 1 , S2)SlXlFar igh t ( s  t . . . .  left . . . . . . . . .  , i g h t -  ,' t S2)SIW 1 ( S I  , $ 2 )  (A. 11) ,S2) '~a tS1 
sbs 2 

xIt lef t ( r ight)  z , ~ tsl,s2) is the left (right) eigenvector corresponding to the eigen- 
value 2`~, a = 1 . . . .  ,4 .  All possible correlations between the Ansatz spins 
shown in Fig. 4a may be calculated in a similar way using the spectral 
decomposi t ion of the kernel (A.I). Note  that if B 2 = - a  I the matrix can be 
symmetrized and 2`3 and 2`4 are always real. However,  in general, it is 
possible to change 2`3,2`4 from real to a complex conjugate pair by varying 
the Ansatz parameters.  In the latter case 

2`odd  t r 
(SOS,.) = 2A -~l ] cos(qr  + q0) (A.12) 

a (• = e2 (~+8 ' ) c~  + B 2 + B~), 
sinh 

b ( - + ) = e B ' - ~ 3 c ~  + B  2 + B  3 - B ~ )  
sinh ~ 1 

(A.6) 

c(+-) = e'~-~c~ ~ 3 - B3 ' -  al - B2), 

d(_+) - 2 ( a 3 +  B 0 c o s h  , 
= e sinh (B3 + B3 - 0~1 - -  BE) 

For  the odd  subspace one has 

2`3.4 = a ( - )  + d ( - )  _+[(a ( - )  -d(-))2+nb(-)c(-)]  1/2 (A.7) 

The  free energy per spin of the model  (3.3) is given through 2,1 after the 
changes B 1 ~ - B1, B 2 ~ - B 2; B 3 --~ - B 3 are made:  

f =  l ln2`,  = �88 1 + �88 + A')  (A.8) 

with 

A ' =  �89 + a4)cosh(a 2 - a4) (a .9)  

instead of the (A.6) values. 
The correlation functions of spins on the same horizontal  (time) row 

are given by  

2`3 2`4 ~ r 
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where ~k3, 4 = ~k~ A3, 4 ~-- A e  +-i~. ~k ~ q, A, and q~ are real functions of 
a's. The limiting case where the monotonic decay(s) (A.10) changes into a 
modulated decay (A.12) is given by X 3 = X 4 or 

[a  ~-~ - d ( - ) ] 2 +  4b(-~c (-~ = 0 (A.13) 

with a ( - ) , b ( - ) , c  ( - ~  given in Eq. (A.6). Then in Eq. (A.12) q = cp = 0 and 
one encounters a single exponential decay. This corresponds to the cases 
treated in II. 

APPENDIX B: FREE ENERGY AND CORRELATION FUNCTIONS 
OF THE TRIANGULAR POTTS MODEL ON THE 
DISORDER SUBSPACE 

The Ansatz problem is given by Eq. (6.1). First, let us remember that 
the three-spin interaction is not translational invariant, but contains only 
the odd-numbered spins and their N N  neighbors. This results in a differ- 
ence of the correlation functions on t = 2 k A t  and t = (2k + 1)At layers. 
For the sake of simplicity we consider here only the case 7 = 0, when this 
problem does not occur. As shown in Appendix A, it is useful to perform 
first an iteration transformation by summing up every second spin. The 
Ansatz partition function transforms as 

Z Ansatz~ 2NA/2,-~Ansatzlr~ /'~ 
U [0s /~0, /~1, /~2) = g Z-'N~2 [,D,C'I ,C2,D) (B.1) 

where A, B, C 1, C 2, and D are functions of a l , a  2, rio,  i l l ,  f12 as given in 
Eqs. (6.3) ('~ = 0). The remaining spins form now a uniform Potts chain 
with interactions given by Eq. (6.2). The corresponding one-dimensional 
transfer matrix has the form 

I eB+D+C eC/2 eC/2 . . . 

e C/2 e B 1 " " " (B.2) 
t = eC/2  1 e B �9 �9 �9 

where C = C l + C 2 + fi0; The eigenvalues and eigenvectors of this matrix 
are easily computed. The eigenvalues are 

~kl, 2 = 1 { eB+D+C ..1._ e B -t- q -- 2 

= e  B 1 ~k3 . . . . .  q 
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The free energy per spin of the Potts model (6.4) is accordingly given by 

f =  �89 + �89 (B.4) 

where 

X, = ~tl(B---~ K a ; C - - - > H ; D - - - ~ M 3 )  (B.5) 

In order to calculate the correlation functions we need also the eigenvectors 
of the matrix (B.2). They have the following form: 

F'I 
X1,2 

Lxi, j I~ p(,~-2) 
[ a )  = , a = 3 . . . . .  q ,  p = e2~- i / (q  - l) (B.6) 

p(q-2)(a-2)  

Consider the correlation functions of the form 

~=1 ~ I(l[~fl~>12 (B.7) 

where 10, l r are Potts variables on the same time row (t - const) and ~ is a 
diagonal matrix 

F 1 ] ~o w 2 
A 

03 ~--- 

l o~q- 1 

= e 2r (B.8) 

Thus the correlation functions (B.7) consist of a constant term correspond- 
ing to the square of the "magnetization" and ( q -  1) terms decaying 
exponentially--since the matrix (B.2) is symmetric, all eigenvalues are real. 
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